Jan 2003 A Mark Scheme (scroll down for some hints)

1

B

 2

A

3

D

4

C

5

D

6

B

7

B

8

D

9

B

10

C

11

D

12

A

13

B

14

A

15

B

 

 

 

 

 

 

 

 

 

 

1.   greatest acceleration at maximum displacement - so when x=50mm

2.  use max Ek = 1/2 m v2  when max v = 2pfA  and f = 50/47

3.  T2  =  2p square root ( (L-600 x 10-3)/g)   and T2 = 1/2 T   where T = 2p square root (L/g)
     sub these two equations into each other and rearrange to find L

4.  c = fl  therefore wavelength = 1.6km. 2km is 3p/2  phase diff which is the same as p/2

5.  find f using c = fl this use this to calculate how many waves will be produced in 0.01 x 10-6s

6.  use l = ws/D  and rearrange for w

7.  nl = d sinq   put n = 2 and q = 45 to find l /d then use this value to find the smallest possible integer value if q = 90 (which is maximum diffraction angle through a grating)

8.  E=1/2 QV  and C = Q/V  combine to find Energy, and then take 10% and then use potential energy, E = mgh

9. 

10.  9 rev per minute = 9 / 60 rev /s.  One rev = 2p so answer = 9 x 2p / 60